
Mixed-Criticality Systems on
COTS MPSoCs

Ph.D. Dissertation by Stefano Esposito
Advisor: prof. Massimo Violante
-- Commission --
prof. Marco Di Natale – referee
prof. Alberto Bosio – referee
prof. Graziano Pravadelli
prof. Paolo Bernardi
prof. Maurizio Rebaudengo

EMBEDDED SYSTEMS

Embedded systems are everywhere
­ Including aircrafts, cars, medical equipment…

Some applications cannot fail under any circumstance
­ or else, someone might get hurt or fired

Dependability is the justified trust in the correct
behavior of a system

It is described by Reliability, Availability,
Maintainability, Safety, Testability

2

THREATS TO DEPENDABILITY

Design errors

Users error

Environmental interferences

A threat may cause a fault

The fault may evolve in an error

When the error reaches the external interface, there is a
failure or misbehavior

Fault Error Failure

3

SAFETY

Safety is a property of a system
­ The property of being protected from harm or non-desirable

outcomes in general
­ It can be negated by faults and subsequent failures

Several standards deal with safety and safety-critical
systems
­ ISO26262
­ DO-178C and DO-254
­ ECSS standards
­ …

4

SAFETY CRITICAL SYSTEMS

A system is safety critical if its failure can produce serious
harm to its user or to the environment

It is often involved in the control of a physical system

It must meet a given deadline.
­ Hard real-time (HRT): catastrophic consequences to a deadline miss
­ Firm real-time (FRT): non-catastrophic consequences, but results are

useless
­ Soft real-time (SRT): just service degradation; results usefulness

decrease with time but is not immediately 0

5

DEALING WITH SAFETY:
ISO26262
Specific for the automotive industry

Defines the Automotive SIL (ASIL)

Each item has an assigned ASIL based on
­ Severity: what happens if the item fails
­ Controllability: how the driver can control the outcome of a

failure
­ Exposure: how probable is a failure

To each ASIL corresponds a set of guidelines for
hardware and software development and testing

6

DEALING WITH SAFETY:
ECSS STANDARDS
European Cooperation for Space Standardization

Define standards for design and development of space
applications
­ Safety requirements
­ RAMS analysis
­ FMEA
­ Testing

Separate standards for both software and hardware

7

DEALING WITH SAFETY:
DO-178C
DO-178C for avionic Software

It is the most relevant for this work

It defines a set of Design Assurance Levels (DALs)

The DAL is conceptually similar to ASIL

The real difference is the certification
­ Must be provided by a third party
­ Hard and expensive process

8

DEALING WITH SAFETY:
ARCHITECTURES
Federated Architecture
­ Each functionality has its own computer
­ Virtually no resource sharing
­ SWaP waste

Integrated Modular Avionics (IMA)
­ Functions can share the same hardware platform
­ Time multiplexing
­ Supported by the ARINC-653 API standard
­ Single core computers

9

MIXING CRITICALITIES

Functions sharing the same hardware can have different DALs

Reduce SWaP by increasing sharing through TDM
­ More space for payload or less fuel consumption

Hard to prove safety
­ low criticality should not interfere with high criticality
­ low criticality has a higher probability of being affected by bugs

Enters the MPSoC
­ ability to simultaneously process several workloads of different

criticalities
­ further reduction of SWaP!
­ Even harder to prove safety!

HW Platform

OS/Middleware

Re
al

-t
im

e
C

on
tr

ol
le

r

U
se

r
In

te
rf

ac
e

H
ou

se
ke

ep
in

g

10

MCA AND RESOURCE CONTENTION

When several application use the same resource the main
issue is contention

In a safety-critical application, contention must be bounded
­ Otherwise WCET estimation is very difficult and imprecise

When considering mixed-criticality other issues arise
­ Applications at low criticality might be subject to errors and corrupt data

and resources used by high criticality applications
­ WCET is not the only concern!

Resource partitioning in both space and time must be granted
in order to achieve a certifiable architecture

HW Platform

OS/Middleware

Re
al

-t
im

e
C

on
tr

ol
le

r

U
se

r
In

te
rf

ac
e

H
ou

se
ke

ep
in

g

Shared
resource

11

DIVIDE ET IMPERA

Resource Partitioning in space is a very different problem
with respect to resource partitioning in time

The two issues can be solved separately and linearly
composed

Resource Partitioning in space
­ Enforce isolation of the data used by each application

Resource Partitioning in time
­ Ensure that no interference in the execution time can ever result by an

application abusing a shared resource

Resource
Partitioning

Space
Partitioning

Time
Partitioning

Solution Solution

Complete
Solution

12

SPACE PARTITIONING

Each application has its own set of reserved resources

It does not concern the temporal aspects of sharing,
just the spatial
­ Data provided by any resource should not be corrupted by

misbehaviors in other modules

Space partitioning should ensure that no application
can corrupt data belonging to a different application

HW

SW

Module A Module B

R0 R1 R3R2

13

HW

SW

SPACE PARTITIONING VIOLATIONS

A faulty module can corrupt resources used by other
modules

Shared resources are most vulnerable
­ The module can use the resource, thus it can modify the data

This includes also changing resource configuration
­ Change configuration of the memory controller
­ Change source/destination address of a DMA controller

Shared memory is the easier victim

Module A Module B

R0 R1 R3R2

14

HW

SW

HOW TO AVOID VIOLATIONS: NO SHARING!

Module A Module B

R0 R1 R3R2
15

HW

SW

HOW TO AVOID VIOLATIONS: CONTROLLED
SHARING

Module A Module B

R0 R1 R3R2

Module S

16

TIME PARTITIONING

Absence of interference on the execution time must be
granted among different applications
­ Ensure that WCET estimation is meaningful

Hard to enforce when the applications run on the same
CPU

Even harder when applications are not at the same
criticality level
­ Different guarantees about correct behavior

Mandatory for safety-crtical hard-real-time applications

17

TIME PARTITIONING: VIOLATIONS

Shared resource abuse
­ Access latency increases
­ Unexpected delays
­ WCET estimation is no longer valid
­ Timing violation!

Safety Critical HRT applications are very sensible to this

Must ensure no violations can happen

18

SCHEDULING MCS

First solutions proposed more than 10 years ago
­ Vestal, 2007

Solve mixed-criticality issues by better system scheduling
­ Originally on single-cores
­ later extended to MPSoCs

Some assumptions are not directly applicable to actual
systems
­ oversimplification of rules and standards
­ high criticality does not necessarily imply high priority

19

SCHEDULING MCS

It is hard to estimate WCET on MPSoC
­ Issue shared by all scheduling approaches
­ Any scheduling approach for real-time systems rely on a WCET

estimation

Some attempts have been made to provide a better WCET
for MPSoC
­ For instance: isWCET by Nowotch and Paulitsch, 2015
­ Based on the increased access latency due to parallel accesses

This approaches only work under a bug-free assumption
­ Something is needed to cope with possible bugs

20

MONITORING

Runtime safety can be enforced by monitors

A monitor is a device that observe a subset of the states of
the system

Incorrect behavior is detected if states differ from
expectations

Expectations can be set by profiling the system or by model-
based approach
­ Use a model of the system to evaluate intermediate internal states to be

monitored
­ Use the same model to design the actual monitor

21

WHAT'S NEW?

This work proposes a new comprehensive system architecture
for MCAs

Based on the concept of partitioning
­ Space partitioning
­ Time partitioning

Able to ensure absence of interference among applications
sharing the same hardware.

Designed to be used with COTS MPSoC platforms
­ Tested on the Zynq and the i.MX6Quad

Certification is the final objective

22

HW

SW

HOW TO AVOID VIOLATIONS: CONTROLLED
SHARING

Module A Module B

R0 R1 R3R2

Module S

23

TYPE-1 HYPERVISORS

Can be used in the controller role

Hardware abstraction layer

Virtual Machines (Resource Partitions)
­ Each application sees only the resources it uses

Similar to AMP but better…
­ Easier to integrate, easier to synchronize (if needed)

…unless something goes horribly wrong
­ SMP is subject to common mode errors Hardware Platform

Type-1 Hypervisor

Resource
Partition 1

Resource
Partition n…

24

SPACE PARTITIONING
SOLUTION

25

Use a Type-1 Hypervisor to define
resource partitions

Each partition runs a separate application
­ Each partition has a set of reserved resources
­ Resource sharing can only happen at the

middleware layer through provided IPC
mechanisms

The system partition contains bootstrap
and configuration code

ISRs run in the system partition

TEMPORAL PARTITIONING

It is hard to prove temporal partitioning a priori

More convenient to prove safety at runtime
­ Even if an application misbehaves, the system shall survive

The proposed architecture is based on multiple monitors
­ Monitor performance metrics for fast response
­ Monitor execution flow for CFEs
­ Monitor overall time to react to functional interruptions

26

PERFORMANCE MONITOR UNIT

Hardware available in most MPSoCs
­ Can have different names, PMU is the ARM implementation

Can be used to monitor a set of performance metrics
­ Including cache hit/miss, stall cyclces, data write/read…

Usually can monitor more than one metric at the same time
­ For instance, Cortex-A9's PMU can monitor up to 6 metrics

Mostly used during application profiling

27

COMPUTE THRESHOLDS

To detect temporal interference not all metrics
are good
­ Must be sensible to interference
­ Must be measurable at runtime

An interference metric should be selected
­ Can be composed by multiple metrics

Once the metric has been selected, thresholds
should be computed
­ Profile the metric
­ Perform statistical analysis
­ Extract the thresholds

28

USE THE THRESHOLDS

Detection Threshold
­ If the metric is above this, something is going horribly wrong

Warning Range
­ If the metric is in this range, it can be symptom of an error, or

it may not…

Counter Threshold
­ If the metric is in the warning range more than this many

times, something is going wrong

Panic Rule: violation of the detection threshold
­ Reset, switch to hot stand-by spare

Warning Rule: violation of the counter threshold
­ Graceful degradation

29

IMPLEMENTATION DETAILS

Different granularities

1. Core level
­ Monitor activities of a core
­ No OS support strictly needed

2. Task level
­ Monitor each task separately
­ Different tasks sharing one of the cores
­ OS should include PMUs in the task context registers and save/restore

them on context switch

30

IMPLEMENTATION DETAILS

The PMU is a hardware unit available in the ARM Cortex-A9
­ Similar units (with different names) are available in most MPSoCs

It must be configured at bootstrap to measure any selected
metrics
­ Specific ASM instructions are available for this
­ A driver can be added to the OS to manage the PMU

The PMU can trigger an IRQ when it reaches a threshold
­ ISR implementing the recovery action for the panic rule

Value of the PMU can be read by software
­ To implement the warning rule

31

WATCHDOG PROCESSORS

Special purpose hardware to monitor the execution flow

They detect some CFEs
­ A CFE is an error that affects the execution flow
­ A tipical example of CFE is an infinite loop caused by a SW bug
­ Wrong results or deadline miss

WDPs used in this work use a signature approach
­ A program is subdivided into blocks, each block is identified by a

unique signature
­ The valid sequence of signatures is unique.
­ WDPs expect reception of such sequence at given time intervals
­ Trigger an error upon wrong/unexpected signature or on timeout

32

SYSTEM WATCHDOG TIMER

The SWDT is a device available on almost every MPSoC

It should be able to send an external signal
­ To trigger a system reconfiguration
­ E.g., switch to hot stand-by spare

It is configured at bootstrap
­ Applications cannot change its configuration

It is re-armed by the critical application

It triggers a system reconfiguration when timeout happens

33

PUTTING ALL TOGETHER:
ODIn-A (avionic)

Space Partitioning
­ Type-1 Hypervisor

Temporal Partitioning
­ PMU
­ WDP
­ SWDT

34

PUTTING ALL TOGETHER: ODIn-S (space)

Harden ODIn against radiation effects

Use TMR for the critical software
­ Supported by a HW voter implemented in the FPGA

Use TTMR for the non-critical software
­ Schedule two execution in parallel
­ Check for agreement at the end of both
­ If no agreement is found execute a third time or

discard computation

35

EXPERIMENTAL VALIDATION
Two flavors of ODIn
­ Avionic ODIn: ODIn-A
­ Space ODIn: ODIn-S

Each implemented on two hardware platforms
­ Xilinx Zynq APSoC (dual-core with integrated FPGA)
­ i.MX6Q MPSoC with Lattice EPP5U FPGA (connected through

PCIe)

36

BENCHMARK APPLICATIONS

Realistic workload provided by Leonardo in the scope of
the EMC2 project

Dedicated workloads for avionic and space use cases
­ For both dual and quad-core architectures

Each workload is a composition of a set of programs
­ Control application
­ Sensor data compression (RICE compression)
­ Image processing (Edge detection)

37

AVIONIC BENCHMARK

Dual-core benchmark
­ Control application – Critical
­ Sensor data compression – Non Critical

Quad-core benchmark
­ Control application – Critical
­ Sensor data compression 1 – Non Critical
­ Sensor data compression 2 – Non Critical
­ Image processing – Non Critical

38

SPACE BENCHMARK

Dual-core benchmark
­ Control application – Critical
­ Sensor data compression – Non Critical

Quad-core benchmark
­ Control application – Critical
­ Sensor data compression – Non Critical
­ Image processing – Non Critical

39

FAULT INJECTION

Used to evaluate system's response to faults

Inject a fault either in the hardware or in the software

Observe the behavior of the system

The fault injection system is based on the Lauterbach
debugger
­ Stop the execution
­ Inject a fault in the system
­ Resume execution
­ Download results and classify

Target System

Lauterbach
Debugger

Workstation

Fault
Information

Workload
Fault Injection &
Data Collection

40

FAULT INJECTION: FAULT MODELS

SEU
­ Bitflip in a memory element, either CPU RF or CFG Regs.

Software bug
­ Bitflip in a random word in the code memory area

Artificial bug
­ Designed to stress the interconnect to enhance observability
­ The metric selected to detect this fault through the PMU is the Data

Cache-dependent Stall Cycles (DCSCs)
­ Based on the assumption that low-criticality applications can have

software bugs, due to the lower design effort

Target System

Lauterbach
Debugger

Workstation

Fault
Information

Workload
Fault Injection &
Data Collection

41

BITFLIP INJECTION CLASSIFICATION

No Effect
­ the fault had no effect on the system

Detected CFE
­ the fault resulted in a control flow error detected by WDPs or PMUs

Detected TO
­ the fault resulted in a functional interruption detected by the SWDT

Failure
­ the fault resulted in a misbehavior

Target System

Lauterbach
Debugger

Workstation

Fault
Information

Workload
Fault Injection &
Data Collection

42

BITFLIP INJECTION RESULTS

No Effect
94%

Detected CFE
2%

Detected TO
4%

Failure
0%

ODIn-A

No Effect
97%

Detected CFE
2%

Detected TO
1%

Failure
0%ODIn-S

No Effect
Detected CFE
Detected TO
Failure

43

6,000 experiments each

SOFTWARE BUG INJECTION

no Effect
89%

Critical Error
0%

Non critical Error
11% Failure

0%

Sw Bug

no Effect

Critical Error

Non critical
Error

Failure

44 10,000 experiments

NE Critical Error
Non-Critical

Error
Failure

8880
(88.8%) 0

1120
(11.2%) 0

Critical Error
­ error in the safety critical application

Non Critical Error
­ error in a non-critical application

Failure
­ undetected error causing a misbehavior

No Effect
­ the fault had no effect on the system

ARTIFICIAL BUG INJECTION

45
15,000 experiments in each scenario

Platform
Buggy
Tasks

Warning Panic NE

Dual-
Core 1

2
(0.01%)

14859
(99.06%)

139
(0.93%)

Quad-
Core

1
1114

(7.43%)
1668

(11.12%)
12218

(81.45%)

2
528

(3.52%)
11348

(76.65%)
3124

(20.83%)

3 0
14490

(99.93%)
10

(0.07%)

CONCLUSIONS

The proposed architecture is suitable for implementing
mixed-criticality on MPSoC

Experimental results proved that critical applications are
never affected by errors in non-critical applications

Final demonstrator presented at the EMC2 final review

Results published in several outlets including
­ ACM TECS
­ Springer JETTA
­ IEEE IOLTS'15, IOLTS'16
­ IEEE LATS'16

46

QUESTIONS?
47

